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Abstract

Commonality analysis is a method of partitioning variance that has advantages over

more traditional "OVA" methods. Specifically, commonality analysis indicates the amount

of explanatory power that is "unique" to a given predictor variable and the amount of

explanatory power that is "common" to or shared with at least one other predictor

variable. This paper outlines and discusses the steps of commonality analysis specific to

canonical correlation analysis using a heuristic example to make the discussion more

concrete. Additionally, advantages of commonality analysis are provided, as well as its

potential limitations.

j
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Canonical Commonality Analysis

Recent reviews of educational research indicate that "OVA" techniques are being

used less frequently as the statistical method of choice, although they are still quite

popular (Goodwin & Goodwin; 1985; Willson, 1980) For example, Elmore and Woehlke

(1988) reported that ANOVA and ANCOVA were used in about 25% of the research

articles published in three educational journals from 1978 to 1987. One potential reason

why such "OVA" techniques maintain their popularity is that they allow the researcher to

divide the dependent variable into a number of portions, including the main effects of each

independent variable and the interactions between the independent variables (Daniel,

1989). However, "OVA" methods are not the only processes by which the researcher can

partition the variance of the criterion variable. Commonality analysis offers another

method of doing so with certain advantages over more traditional methods.

What is commonality analysis? Commonality analysis indicates the amount of

explanatory power that is "unique" to a given predictor variable and the amount of

expianatory power that is "common" to or shared with at least one other predictor variable

(Thompson & Miller, 1985) This analysis may be used in conjunction with the canonical

correlation method to aid in the interpretation of canonical results.

Commonality analysis may be conducted in both univariate and multivariate analyses.

The only difference between univariate and multivariate commonality analyses is that in

the multivariate case, the criterion variables must be converted to synthetic composite

scores (Daniel, 1989), which will be discussed in more detail below. The purpose of this

paper is to address commonality analysis specific to canonical correlation analysis. A

heuristic example is provided to make the discussion more concrete.

Steps of Canonical Commonality Analysis

The first step in canonical commonality analysis is to perform a canonical correlation

rmalysis in order to derive the standardized canonical function coefficients and the

el
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canonical functions. In this example, the analysis included two criterion variables

("catmed" and "moress") and two pred ctor variables ("lessfed" and "moredef")

Insert Table 1 about here.

Step two in this analysis is to calculate the criterion composite scores, also called

"variate" scores. To do so, the standardized canonical function coefficients are multiplied

by the Z-scores on the criterion variables. These products are then summed to create the

synthetic criterion composite variables - one for each function yielded by the canonical

correlation analysis. For example, the computations for the two functions would be:

crit1 = (-0.752 x zcatmed) + (1.572 x zmoress)

crit2 = (1.820 x zcatmed) + (-1.187 x zmoress)

The third step is to conduct a multiple regression on the synthetic composite

criterion variables using all possible combinations of the predictor variables. It should be

noted that the squared correlation coefficient when all the predictors are used

simultaneously (regression rer It) always equals the squared canonical correlation because

the two analyses are the same in the filll model case (Daniel, 1989; Thompson & Miller,

1985).

The final step in the commonality analysis is to calculate the unique and common

variance partitions. Because there are two predictor variables, there are three possible

unique and common commonality components (Rowell, 1991). Table 2 lists formulas for

calculating unique and commonality components with diffefent numbers of predictor

variables.

Insert Table 2 about here

Table 3 shows calculations for the unique and commonality components for both functions

in this example
Insert Table 3 about here.
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Furthermore, the explanatory power of each predictor is calculated by adding down the

columns for each predictor. Table 4 displays the commonality results for each function

Insert Table 4 about here.

In this example, it is shown that on the first function, the majority of the explanatory

power of predictors is common to both variables. Although 64.0% of the variance can be

accounted for by the variable "Moredef' alone on the first function, 48.3% of the total

explanatory power is common to both predictors. The unique explanatory power of

"Moredef' is therefore only 15.7%. The unique explanatory power of "Lessfed" is only

7.0% (.553 - 48313). Also, it can be seen that the second function has virtually no

explanatory ability.

Discussion

A couple of points need to be addressed regarding commonality analysis. First, as

may be obvious from the formulas provided in Table 2, the number of components or

variance partitions increases rapidiy as additional predictors are considered (Rowell,

1991). Not only does this make the calculations more tedious, but severely complicates

interpretation of the results as well. Many have recommended that only four predictors be

used or that some predictors may be grouped together into meaningful subsets to reduce

the number of predictors.

Second, negative commonalities indicate the presence of suppressor effects

(Thompson & Miller, 1985). Beaton (1973) explained that the negative commonality,

therefore, indicates that the explanatory power of either predictor variable is greater when

the other is used

Finally, it is important to understand the liinitations and advantages of commonality

analysis, as with any method The main limitation often cited is that there is no statistical

significance test for commonalities. However, this fact is not necessarily detrimental



Commonality 6

because commonality analysis is generally conducted after a significant canonical

correlation has already been found. A second potential limitation may be the fact that this

procedure can only realistically accommodate a limited number of predictor variables for

the reasons previously addressed. Although this technique is superior to others that do

not examine the partitioning of explained variance, it is still somewhat limited in its ability

to do so.

Despite these limitations, commonality analysis has several advantages, as cited by

Daniel (1989) and Thompson and Miller (1985). First, commonality Analysis honors that

relationships among variables because the variables do not need to be converted from their

original scale and because it analyzes all possible orders of entry of the predictors.

Second, because commonality indicates the degree of overlap of variables, it may be

helpful in the social sciences where variables are often correlated with one another. Third,

because commonality analysis was originally a regression technique that was extended to

the canonical case, it reinforces the idea that canonical correlation analysis is the most

general linear model of parametric statistics.
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Table 1

Original Data

CATMED MORESS LES SFED MOREDEF

15 16 20 20

14 14 19 19

12 13 10 11

14 13 9 10

15 15 8 9

15 14 7 8

17 16 20 19

13 15 19 19

15 16 18 19

14 16 17 17

10 12 15 15

10 11 8 8

10 9 8 6

14 15 18 17

13 13 10 10

15 15 17 17

16 16 20 19

14 15 19 20

14 14 16 16

13 13 10 9

11 12 15 15

13 12 9 9

9
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Table 2

Formulas for Unique and Commonality Components of Variance

Two Predictor Variables

Ul = -R2(2) + R2(12)
U2 = -R2(1) 4 R2(12)
C12 = R2(1) + R2 (2) - R2(12)

Three Predictor Variables

R2(23) R2(123)

Ul = -R2(23)
U2 = -R2(13)
U3 = -R2(12)
C12 = -R2(3)
C13 = -R2(2)
C23 = -R2(1)
C123 = R2(1)

+ R2(123)
+ R2(123)
+ R2(123)
+ R2 (13) + R2 (23) - R2(123)
+ R2 (12) + R2 (23) - R2(123)
+ R2 (12) + R2 (13) - R2(123)
+ R2(2) + R2(3) - R2 (12) - R2 (13)

Four Predictor Variables

Ul = -R2(234) + R2(1234)
U2 = -R2(134) + R2(1234)
U3 = -R2(124) + R2(1234)
U4 = -R2(123) + R2(1234)
C12 = -R2(34) + R2 (134) + R2 (234) - R2(1234)
C13 = -R2(24) + R2 (124) + R2 (234) - R2(1234)
C14 = -R2(23) + R2 (123) R2 (234) - R2(1234)
C23 = -R2(14) + R2 (124) + R2 (134) - R2(1234)
C24 = -R2(13) + R2 (123) + R2 (134) - R2(1234)
C34 = -R2(12) + R2 (123) + R.2 (124) - R2(1234)
C123 = -R2(4) + R2(14) + R2(24) + R2 (34) R2 (124) - R2(I34) - R2(234) + R2(I234)
C124 = -R2(3) + R2(13) + R2(23) + R2 (34) - R2 (123) - R2(134) - R2(234) + R2(1234)
C134 = -R2(2) + R2(12) + R2(23) + R2 (24) - R2 (123) - R2(124) - R2(234) + R2(1234)
C234 = -R2(1) + R2(12) + R2(13) + R2 (14) - R2 (123) - R2(124) - R2(134) + R2(1234)
C1234 = R2(1) + R2(2) + R2(3) 4. R2(4) R2(12) - R2(13) - R2 (14) - R2 (23) - R2 (24)

R2 (34) + R2 (123) + R2(124) + R2(134) + R2(234) - R2(1234)

Note. From "Partitioning predicted variance components into constituent parts. How to conduct
commonality analysis." by K. Rowell. 1991.
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Table 3

Example Calculations of Variance Partitions

Function 1

Ul = -R2(2) + R2(12)

+ R2(12)

+ R2 (2)

= - 64018

= - 55352

_ R2(12) =

+ 71057 = 15705

= 48313

U2 = -R2(1) + 71057 = 07039

C12 = R2(1) 55352 + .64018 - 71057

Function 2

Ul = -R2(2) + R2(12) = - 00003 + 00034 = 00031

1J2 = -R2(1) + R2(12) = 00007 + 00034 = .00027

Cl2 = R2(1) + R2 (2) - R2(12) = 00007 + 00003 - 00034 = - 00024
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Table 4

Commonality Analysis Summary Tables - for each function

Function 1

Component Lessfed

Unique to Lessfed 07039

Unique to Moredef

Moredef

15705

Common to Lessfedi 48313 48313

Moredef

Sum of Components

r2 of prediction with

canonical composite scores

Function 2

55.352% 64.018%

55352 64018

.

Component Lessfed Moredef

Unique to Lessfed 00031

Unique to Moredef 00027

Common to Lessfed/ - 00024 - 00024

Moredef

Sum of Components 307% .003%

r2 of prediction with

canonical composite scores 00007 00003
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Appendix

LIST
VARIABLES=CATMED MORESS LESSFED MOREDEF
ICASES=BY I
/FORMAT=WRAP UNNUMBERED.

MANOVA
CATMED MORESS WITH LESSFED MOREDEF
/PRINT=SIGNIF (MUT EIGEN DIMENR)
IDISCRIM=STAN CORR ALPHA (.99)
/DESIGN.

DESCRIPTIVES VARIABLES=ALL/SAVE.
LIST VARIABLES=ALL/CASES=22/FORMAT=NUMBERED.
COMPUTE CRIT1=(-0.752*ZCATMED) -F (1.572*ZMORESS).
COMPUTE CRIT2=(1.820*ZCATMED) + (-1.187*ZMORESS).
DESCRIPTIVES VARIABLES=ALL.
SUBTITLE 'la REGRESSION TO PRED CANONICAL SVINI WITH 2 PREDS'.
REGRESSION VARIABLES=CRIT1 CRIT2 LESSFED MOREDEF/DEPENDENT=CRITI/

ENTER LESSFED MOREDEF.
SUBTITLE 'lb REGRESSION TO PRED CANONICAL SYN WITH 2 PREDS'
REGRESSION VARIABLES=CRIT1 CRIT2 LESSFED MOREDEFTDEPENDENT=CRIT2/

ENTER LESSFED MOREDEF.
SUBTITLE '2a REGRESSION TO PRED CANONICAL SYN WITH LESSFED'
REGRESSION VARIABLES=CRIT1 CRIT2 LESSFED MOREDEF/DEPENDENT=CRITI/

ENTER LESSFED.
SUBTITLE '2b REGRESSION TO PRED CANONICAL SYN WITH LESSFED'.
REGRESSION VARIABLES=CRITI CRIT2 LESSFED MOREDEF/DEPENDENT=CRIT2/

ENTER LESSFED.
SUBTITLE '3a REGRESSION TO PRED CANONICAL SYN WITH MOREDEF'
REGRESSION VARIABLES=CRIT1 CRIT2 LESSFED MOREDEF/DEPENDENT=CRIT I/

ENTER MOREDEF
SUBTITLE '3B REGRESSION TO PRED CANONICAL SN'N WITH MOREDEF'
REGRESSION VARIABLES=CRIT1 CRIT2 LESSFED MOREDEF/DEPENDENT=CRIT2/

ENTER MOREDEF.
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